Benchtop NMR relaxometry to monitor Ni(II) removal by resin and activated charcoal

M. Bernardi^{1,a}, A-L Hantson² and Y. Gossuin¹

¹ Biomedical Physics Department, Umons, Belgium
 ² Chemical and Biomedical Engineering Department, Umons, Belgium
 ^acorresponding author: marie.bernardi@umons.ac.be

Context

Heavy metals ions such as Ni²⁺ are known to be toxic and must be removed from wastewater [1]. These ions also have paramagnetic properties which allowed the use of Nuclear Magnetic Resonance (NMR) relaxometry to monitor their removal from water by adsorbent [2-3]. In this research, the removal of Ni²⁺ by Dowex Marathon MSC resin and commercial activated carbon (AC) was studied with T_1 and T_2 relaxometry. T_1 measurements of Ni²⁺ solutions after adsorption/ion exchange were used to obtain adsorption/ion exchange isotherms. Study of the relaxation time of the loaded resin/AC was also performed.

Isotherms

Fig. 1 Experimental set-up for adsorption/ion exchange isotherm

Method

- Shaking at 300 rpm with NMR tubes filled with 5.5 mg of wet resin (50 mg of AC) and 350 μl of Ni²⁺ solution at different concentrations;
- Measurement of T_1 at 22 °C and 20 MHz when equilibrium was reached;
- > Calculation of q_e , C_e with Eq. 1 and 2;
- Fitting isotherm with Langmuir and Freundlich model (Eq. 3 and 4).

Model

NMR

From the value of T_1 or T_2 measured, the concentration of Ni²⁺ remaining in solution (C) can be determined with:

 $C = \frac{\left(\frac{1}{T_{i, water}} - \frac{1}{T_{i}}\right)}{r_{i}}$

Where subscript *i* denotes 1 or 2; $T_{i, water}$, the relaxation time of water and r_i , the relaxivity. The amount of Ni²⁺ loaded on the adsorbent (*q*) can be obtained with:

$$q = \frac{VA}{m} [C_0 - C]$$

Where V, the volume of solution; A, the atomic weight; C_0 , the initial ion concentration; and m, the mass of adsorbent.

Adsorption/ion exchange isotherms are generally described by the Langmuir isotherm model. This model predicts the maximum adsorption capacity (q_{max}) of an adsorbent for Ni²⁺ ion:

$$q_e = \frac{q_{max}K_LC_e}{1 + K_LC_e}$$

(3)

(2)

Where q_e , the equilibrium adsorption capacity; K_L the sorption equilibrium constant and C_e the concentration at equilibrium.

Another common model for the Ni²⁺ adsorption/ion exchange isotherms is the

Table 1 Parameters of Langmuir and Freundlich models

	Langmuir		
	$q_{\max} ({ m mg}_{ m Ni} { m g}_{ m sorb-1})$	<i>K</i> _L ([L mg _{Ni} ⁻¹] x 10 ⁻²)	R ²
/larathon MSC	70.1 ± 0.8	5.4 ± 0.7	0.96
AC	9.1 ± 0.1	5.22 ± 0.31	0.99
	Freundlich		
	$K_{\rm F} ({\rm mg_{Ni}}^{1-1/n} {\rm g_{sorb}}^{-1} {\rm L}^{1/n}$	י) <i>n</i>	R ²
/ larathon			

Freundlich model:

$q_e = K_F C_e^{1/n}$ Where K_F is an adsorption capacity constant and *n* is the adsorption intensity.

Loaded adsorbent

Method

- Shaking with magnetic stirrer, beakers filled with 10 g of wet resin
 (1 g of AC) and 25 mL of Ni²⁺ solution at different concentrations;
- When equilibrium is reached, rinsing and filtration of the loaded adsorbent before drying it;
- Filling NMR tubes with 2 g of loaded Dowex and 80 mg of loaded AC rehydrated with distilled water (4 mL for Dowex; 200 μL for AC);
- For AC only, filtration by centrifugation in order to remove the intergranular water [4];
- Measurement of T_1 , T_2 at 10 MHz for resin (at 20 MHz for AC) and 22 °C;
- Mineralization of the loaded adsorbent prior to determination of its Ni²⁺ content thanks to inductively Coupled Plasma (ICP) Atomic Emission Spectroscopy/Mass Spectrometry (AES/MS) technique.

(4) AC 5.96 ± 0.38 15.4 ± 4 0.917.3 ± 3.1 0.9

 T_1 and T_2 curves of the Ni²⁺ loaded AC post-filtration are biexponential loaded resin are biexponential

(5)

For resin

1/T_{i, fast} (s⁻¹)

30

20

 $1/T_{i, slow}$ are related to interporosity $1/T_{i, fast}$ are related to intraporosity

 $1/T_{i, slow}$ and $1/T_{i, fast}$ can be correlated with the Ni²⁺content determined by ICP-AES/MS. The data was fitted using an empirical law:

 $\frac{1}{T_i} = aq_{ICP}^c + b$

For AC (post-filtration)

 $1/T_{i, slow}$ are related to **mesoporosity** $1/T_{i, fast}$ are related to **microporosity**

Fig. 3 Experimental set-up for the study of the loaded adsorbent

Fig. 4 Effect of Ni²⁺ content on the relaxation rates of the fast-relaxing fraction of Dowex Marathon MSC.

Fig. 5 Effect of Ni²⁺ content on the relaxation rates of the slow-relaxing fraction of AC after filtration by centrifugation

This work was supported by the Fonds de la recherche scientifique-FNRS under Grant n° T.0113.20

Fig. 6 Set-up for column experiment